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Abstract
Typical performance of low-density parity-check (LDPC) codes over a
general binary-input output-symmetric memoryless channel is investigated
using methods of statistical mechanics. Relationship between the free
energy in statistical-mechanics approach and the mutual information used in
the information-theory literature is established within a general framework;
Gallager and MacKay–Neal codes are studied as specific examples of LDPC
codes. It is shown that basic properties of these codes known for particular
channels, including their potential to saturate Shannon’s bound, hold for general
symmetric channels. The binary-input additive-white-Gaussian-noise channel
and the binary-input Laplace channel are considered as specific channel models.

PACS numbers: 02.50.−r, 75.10.Hk, 89.70.+c, 89.20.Kk

1. Introduction

Low-density parity-check (LDPC) codes have drawn considerable attention in the information-
theory literature due to their excellent performance, close to the information-theoretic upper
bound (Shannon’s bound) defined by the channel coding theorem [1]; this can be achieved
with a feasible decoding effort by using the so-called sum-product algorithm. The standard
approach in the information-theory literature to the analysis of the typical performance of
LDPC codes is the density evolution analysis [2]. Density evolution analysis provides
the decoding threshold, a critical noise level of a given communication channel below
which decoding by the sum-product algorithm is typically successful, which means that the
average decoding error probability is exponentially small in the codelength; above this value,
decoding by the sum-product algorithm typically fails.

The statistical-mechanics approach to the analysis of LDPC codes has also attracted much
interest in the literature [3–8, 10–12]. The statistical-mechanics-based analysis also gives us
similar results to density evolution, but it tells us more. Equipped with the free energy,
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it provides information about the structure of solutions, and in particular, the information-
theoretic threshold, a second critical noise level below which optimal decoding (which in
general requires a computational effort that grows exponentially with the codelength) provides
a perfect error-correction and above which even optimal decoding fails. For example,
statistical-physics-based analyses have discovered that for a certain type of LDPC codes
the information-theoretic threshold is equal to Shannon’s bound even for low connectivity.
Existing statistical-mechanical studies on LDPC codes, however, have been mostly confined
to the case of binary symmetric channel (BSC), which fits into the statistical-mechanical
framework in a natural way [4–7]. Notable exceptions are the work by Montanari [8]
that discusses a binary-input output-symmetric (BIOS) channel, which is a generic class
of channel models including the additive-white-Gaussian-noise channel (BIAWGNC) as well
as the BSC3, and the study of Sourlas codes [3], a simple LDPC code, in which non-BSC
channels are addressed [10–12].

Motivated by these observations, we relate the free energy to the mutual information, a
measure of information transmission commonly used in the information-theory literature in a
general setting, based on which we investigate the typical performance of LDPC codes over
a BIOS memoryless channel. From the statistical-mechanical point of view, LDPC codes are
regarded as dilute random spin systems, the fact that has motivated the statistical-mechanics
studies of LDPC codes; it is therefore natural to expect that they will exhibit some sort
of universality, just as typical statistical-mechanical systems do, so that general properties
of LDPC codes observed in the BSC case will be preserved when different, more realistic,
communication channels are considered. In this paper, we show that this is generally the
case. In particular, we show that the LDPC codes can potentially saturate Shannon’s bound
for general BIOS channel.

The paper is organized as follows: in section 2 we introduce the general framework,
notation, codes and the channels that we will focus on. In section 3 we will establish
relationship between mutual information and free energy in a general setting, and will briefly
present the analysis. Results obtained for the Gallager and MacKay–Neal (MN) codes will be
described in sections 4 and 5, respectively, followed by the conclusions.

2. The general framework

2.1. Symmetric channels

We consider the general class of BIOS memoryless channels. The channel input is binary
(±1), and the output may take any real value. The characteristics of a channel are described by
the channel transition probabilities, P(y|x = 1) and P(y|x = −1). Let p(y) ≡ P(y|x = 1).
A symmetric channel is characterized as a channel whose transition probabilities satisfy
P(y|x = −1) = P(−y|x = 1) = p(−y), which yields P(y|x) = p(xy). Various types of
channel models of practical interest fall into the class of BIOS channels, including the binary
symmetric channel (BSC)

pBSC(y) = (1 − p)δ(y − 1) + pδ(y + 1) (1)

the binary-input additive-white-Gaussian-noise channel (BIAWGNC)

pBIAWGNC(y) = 1√
2πσ 2

e−(y−1)2/2σ 2
(2)

3 One should also mention a recent study using the weight and magnetization enumerator methods [9].
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and the binary-input Laplace channel (BILC)

pBILC(y) = 1

λ
e−|y−1|/λ. (3)

Each of the parameters p, σ 2 and λ represents the degree of degradation induced by the
channel noise. We call each of them the noise level and let d denote the generic one.
BIAWGNC and BILC channels are arguably more realistic and relevant than BSC in the case
of practical communication channels, and have been studied extensively in the information-
theory literature.

2.2. Gallager code

LDPC codes have been originally introduced by Gallager in his seminal work from 1963 [13].
Gallager’s original construction [13] is one of the most extensively studied LDPC codes in
the information-theory literature. It is defined by its parity-check matrix A = [C1|C2] of
dimensionality (M − N) × M , which is taken to be random and very sparse. The submatrix
C2, of dimensionality (M − N) × (M − N), is assumed invertible.

In the encoding step, the encoder computes a codeword from the information vector
ξ ∈ {0, 1}N by employing a generator matrix G

x = GT ξ mod 2 (4)

where the generator matrix is defined by

GT =
[

I

C−1
2 C1

]
mod 2. (5)

This construction ensures AGT = O mod 2. The information code rate for unbiased messages
is R = N/M .

In regular Gallager codes, the number of non-zero elements per row of A is fixed to be
K. Average number of non-zero elements per column is then C ≡ K(M − N)/M , whereas
we will consider the case in which the number of non-zero elements in each column is forced
to be exactly C. Irregular Gallager codes can be defined by relaxing these constraints on the
numbers of non-zero elements. It has been known that making code construction irregular
may improve performance significantly [14], but we will not discuss irregular codes in the
current paper. We call the resulting regular Gallager code a (C,K)-Gallager code4.

2.3. MN code

We also discuss a variant of LDPC codes, called the MacKay–Neal (MN) code [15, 16]. The
generator matrix G of the MN code is defined by GT = C−1

n Cs mod 2, where Cs and Cn are
sparse matrices of dimensionality M ×N and M ×M , respectively; Cn is assumed invertible.
The information rate for the code is R = N/M for unbiased message.

In regular MN codes the same constraints on the numbers of non-zero elements are
imposed on both matrices Cs and Cn. The numbers of non-zero elements per row of Cs and
Cn should be exactly K and L, respectively. Also here, we do not discuss irregular MN codes
[17] in this paper. The numbers of non-zero elements per column of Cs and Cn are set to C
and L, respectively, where C = KM/N holds. We call the resulting code a (K,C,L)-MN
code.
4 Difference exists in the convention used to specify the regular Gallager code between the statistical-mechanics and
information-theory literatures: (C, K)-Gallager code as defined in this paper is called the (K, C)-Gallager code in
the statistical-mechanics literature. In this paper we are following the convention of the information-theory literature.
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3. Analysis

3.1. Mutual information

The mutual information is a fundamental quantity in information theory, which measures the
information transmitted through a communication channel. Consider a generic situation in
which random variables S,X and Y represent the data to be estimated, the sent signal and
the received signal, respectively. We assume that mapping from S to X is one-to-one and
deterministic. For the mutual information I (S;Y ) we have

I (S;Y ) = I (X;Y ) = H(Y) − H(Y |X) (6)

where H(Y) is the entropy of Y, and where H(Y |X) is the conditional entropy of Y conditioned
on X (i.e., of the degradation process).

Let the data prior be P(S) and the channel characteristics be P(Y |X). The posterior
probability of S conditioned on Y becomes

P(S|Y ) = P(Y |X(S))P (S)

P (Y )
(7)

where P(Y ) = ∑
S P (Y |X(S))P (S) is the marginal probability of Y. The mutual information

I (S;Y ) becomes

I (S;Y ) = −〈log P(Y )〉Y + 〈〈log P(Y |X)〉Y |X〉X (8)

where the first and second terms on the right-hand side are the entropy of Y and that of
the channel noise, respectively. Since −log P(Y ) is nothing but the free energy utilized in
various statistical-mechanical studies of information processing, this argument establishes the
relationship between the mutual information and the free energy (averaged over the received
signal) in various cases, including those of Gallager and MN codes to be presented in the
following.

It should also be noted that absolute values of the mutual information have a proper
operational meaning (the amount of information transfer, the quantity commonly measured in
bits or nats), in contrast to the free energy, where only relative values are of relevance. This
arguably implies that the mutual information, rather than the conventional free energy, is the
more fundamental quantity when it comes to problems of information transmission.

3.2. Gallager code

The decoding problem of the Gallager code is to find τ which is best supported (i.e., most
probable) by the received signal y among the set TJ of τ satisfying the parity-check equation
(Aζ = Aτ mod 2 if we write it in the {0, 1}-notation). Let

Pγ (τ ; J) = Z−1
γ exp


−γ

M−N∑
µ=1


Jµ

∏
j∈L(µ)

τj − 1




 (9)

where L(µ) = {j |Aµj = 1} denotes the set of indices for which the parity-check matrix A

has 1 in the µth row, and Jµ ≡ ∏
j∈L(µ) ζj is the µth check. The set TJ is then expressed as

the support of the ‘prior’ distribution limγ→∞ Pγ (τ ; J), as

TJ =
{
τ

∣∣∣∣ lim
γ→∞ Pγ (τ ; J) > 0

}
. (10)

Application of the Bayes formula yields the posterior probability of τ conditioned on y, as

Pγ (τ |y; J) = P(y|τ )Pγ (τ ; J)

Pγ (y; J)
(11)
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Figure 1. Field distributions corresponding to various BIOS channels.

where

Pγ (y; J) ≡
∑

τ

P(y|τ )Pγ (τ ; J) (12)

is the marginal probability of the received signal y. The posterior acquires the Gibbs–
Boltzmann form

Pγ (τ |y; J) = 1

Z
exp[−βHγ (τ ; y, J)] (13)

with the Hamiltonian

Hγ (τ ; y, J) = −γ

M−N∑
µ=1


Jµ

∏
j∈L(µ)

τj − 1


−

M∑
j=1

log p(τjyj ) + logZγ . (14)

We have to take the limit γ → ∞ and consider it at β = 1 (Nishimori’s temperature
[10, 19–21]) in order to obtain the true posterior. The marginal Pγ (y; J) plays a role of the
partition function.

As shown in [8, 18], the channel characteristics enter into the Hamiltonian (14) as the
term log p(τjyj ) which, in view of τj = ±1, can be rewritten as

log p(τjyj ) = τj

1

2
log

p(yj )

p(−yj )
+

1

2
log p(yj )p(−yj ). (15)

This means that it is the log-likelihood ratio h(yj ) ≡ (1/2) log(p(yj )/p(−yj )) that serves
as the external field acting on site j , and that the channel characteristics define the field
distribution. Analysing the effect of having different communication channels on the properties
of LDPC codes therefore reduces to investigating the effect of different field distributions on the
physical properties of the system. Sketches of the field distribution for the BSC, BIAWGNC
and BILC are shown in figure 1.

The assumption that the channel is memoryless is standard in the information-theory
literature, and is also essential in the following analysis. In various application areas of
digital communications, including those of wireless communications, one sometimes has to
consider a channel with memory, since principal physical process of signal degradation may
have larger time constant than the bit interval. In such cases, the memory effect induces
correlations between the external field of different sites, which makes the analysis much more
difficult.

We evaluate the mutual information I per transmitted symbol, of the variable to be
estimated τ (which is also the sent signal in the cases of Gallager and MN codes treated in
this paper), and that of the received signal y, in the infinite-codelength limit M → ∞. From
(8) we have

I = − lim
M→∞

M−1〈log P∞(y; J)〉y + 〈log p(y)〉y. (16)
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The difficulty in the evaluation of I lies in that of its ‘free-energy’ part

f ≡ − lim
M→∞

M−1〈log P∞(y; J)〉y (17)

for which we assume self-averaging over randomness of the parity-check matrix A and of ζ,
and evaluate its average using the replica method, that is,

f = − lim
M→∞

lim
n→0

M−1 ∂

∂n
log〈[P∞(y; J)]n〉A,y,ζ . (18)

In calculating the free energy, we perform the gauge transformation τj → ζj τj , yj → ζjyj ,
after which the average over y can be taken with respect to

∏M
j=1 p(yj ).

The replica calculation basically follows the same line as in [5], we therefore omit details
of the calculation. Exchanging the order of the two limits in (18) so that the limit M → ∞ is
taken first to apply the saddle-point method, one obtains

f = − lim
n→0

∂

∂n
Extr
q,q̂

[
C

K
G1(q) − G2(q, q̂) + G3(q̂)

]
+ R log 2 (19)

where

G1(q) ≡ log
n∑

m=0

∑
〈α1···αm〉

qK
α1···αm

− n log 2 G2(q, q̂) ≡
n∑

m=0

∑
〈α1···αm〉

qα1···αm
q̂α1···αm

G3(q̂) ≡ log


 ∑

τ 1,...,τ n

〈
n∏

α=1

p(ταy)

〉
y

1

C!


 n∑

m=0

∑
〈α1···αm〉

q̂α1···αm
τα1 · · · ταm




C

 .

(20)

To proceed further we adopt the replica-symmetric (RS) ansatz, which assumes that
the relevant quantities are invariant under any permutation of the replica indices {1, . . . , n}.
Following [5], we specifically let

qα1···αm
= q0

∫
umπ(u) du q̂α1···αm

= q̂0

∫
ûmπ̂(û) dû. (21)

We will use the following simplifying notation:

DK
π (u) ≡

K∏
j=1

π(uj ) duj . (22)

The replica-symmetric free energy f RS becomes

f RS = Extr
π,π̂


log 2 + C

∫ ∫
log(1 + uû)π(u)π̂(û) du dû− C

K

∫
log


1 +

K∏
j=1

uj


DK

π (u)

−
∫ 〈

log

[
p(y)

C∏
l=1

(1 + ûl) + p(−y)

C∏
l=1

(1 − ûl)

]〉
y

DC
π̂ (û)


 (23)

in which q0 and q̂0 have been eliminated using the extremization condition q0q̂0 = C. The
above free energy is similar to that of [8], and to that obtained for other channels [4, 6]; however,
here we point to the direct relationship between the free energy and the mutual information
(equation (16)). Heuristic construction of a sufficient condition to the extremization problem
with respect to π and π̂ is possible, and it gives the following saddle-point equations:

π(u) =
∫ 〈

δ

[
u − tanh

(
h(y) +

C−1∑
l=1

tanh−1 ûl

)]〉
y

DC−1
π̂ (û)

π̂(û) =
∫

δ


û −

K−1∏
j=1

uj


DK−1

π (u).

(24)
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There may exist more than one solution to the saddle-point equations. In such cases, in
view of the saddle-point method used in deriving the replica-symmetric free energy, the
solution which minimizes the mutual information I gives the globally stable state, defining
the thermal equilibrium properties of the system. The significance of metastable states—
stable solutions other than the globally stable state—is that they are regarded as defining the
practical performance limits (i.e., the decoding threshold) rather than the information-theoretic
threshold, as discussed later.

The performance of the code is quantified by the overlap m = M−1∑M
k=1 ζj 〈τj 〉, which

is given as m = ∫
sign(z)P (z) dz, where

P(z) =
∫ 〈

δ

[
z − tanh

(
h(y) +

C∑
l=1

tanh−1 ûl

)]〉
y

DC
π̂ (û). (25)

3.3. MN code

The decoding problem for the MN code is to find S and τ which are the best suitable
in view of the received signal y among the sets of S and τ satisfying the parity-check
equation (CsS + Cnτ = Csξ + Cnζ mod 2 if written in the {0, 1}-notation). Defining the µth
component of the check J as Jµ = ∏

j∈Ls (µ) ξj

∏
l∈Ln(µ) ζl , where Ls(µ) = {j |(Cs)µj = 1}

and Ln(µ) = {l|(Cn)µl = 1}, the posterior probability of S and τ conditioned on the received
signal y and the check J is given by

Pγ (S, τ |y; J) = 1

Z
exp[−βHγ (S, τ ; y, J)] (26)

in the limit γ → ∞ and at β = 1, where the Hamiltonian Hγ (S, τ ; y, J) is defined as

Hγ (S, τ ; y, J) = −γ

M∑
µ=1


Jµ

∏
j∈Ls (µ)

Sj

∏
l∈Ln(µ)

τl − 1


− Fs

N∑
j=1

Sj −
M∑
l=1

log p(τlyl) + const

(27)

where Fs is a parameter representing the bias of the information vector ξ in such a way that
P(ξj = ±1) = (1 ± tanh Fs)/2 holds. Again, the channel characteristics define the random
field acting on {τl} via the log-likelihood ratio (1/2) log(p(y)/p(−y)).

We perform the gauge transformation Sj → ξjSj , τj → ζj τj and
yj → ζj τj , and introduce the mutual information per transmitted symbol I =
−limM→∞ M−1〈log P∞(y; J)〉y + 〈log p(y)〉y . Assuming the self-averaging property to hold,
the replica calculation can be done along the same way as in [5]. The ‘free-energy’ part of the
mutual information I becomes

f = − lim
n→0

∂

∂n
Extr

q,q̂,r,r̂
[G1(q, r) − G2(q, q̂, r, r̂) + G3(q̂, r̂)] + R log 2 (28)

where

G1(q, r) ≡ log
n∑

m=0

∑
〈α1···αm〉

qK
α1···αm

rL
α1···αm

− n log 2

G2(q, q̂, r, r̂) ≡ N

M

n∑
m=0

∑
〈α1···αm〉

qα1···αm
q̂α1···αm

+
n∑

m=0

∑
〈α1···αm〉

rα1···αm
r̂α1···αm

(29)
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and

G3(q̂, r̂) ≡ N

M
log


 ∑

S1,...,Sn

〈
eFs

∑n
α=1 ξSα 〉

ξ

1

C!


 n∑

m=0

∑
〈α1···αm〉

q̂α1···αm
Sα1 · · · Sαm




C



+ log


 ∑

τ 1,...,τ n

〈
n∏

α=1

p(ταy)

〉
y

1

L!


 n∑

m=0

∑
〈α1···αm〉

r̂α1···αm
τα1 · · · ταm




L

 . (30)

We adopt the RS ansatz as before, under which we have [5]

rα1···αm
= r0

∫
vmρ(v) dv r̂α1···αm

= r̂0

∫
v̂mρ̂(v̂) dv̂ (31)

in addition to (21). The replica-symmetric free energy f RS becomes

f RS = Extr
π,π̂,ρ,ρ̂


(1 + R) log 2 + K

∫ ∫
log(1 + uû)π(u)π̂(û) du dû

+ L

∫ ∫
log(1 + vv̂)ρ(v)ρ̂(v̂) dv dv̂

−
∫ ∫

log

(
1 +

K∏
k=1

uk

L∏
l=1

vl

)
DK

π (u)DL
ρ (v)

− K

C

∫ 〈
log

[∑
S=±1

eFsξS

C∏
k=1

(1 + Sûk)

]〉
ξ

DC
π̂ (û)

−
∫ 〈

log

[∑
τ=±1

p(τy)

L∏
l=1

(1 + τ v̂l)

]〉
y

DL
ρ̂ (v̂)


 (32)

in which q0, q̂0, r0 and r̂0 have been eliminated using the extremization conditions, q0q̂0 = C

and r0r̂0 = L.
Construction of a heuristic solution to the extremization problem can be done in the same

manner, which yields the following saddle-point equations:

π(u) =
∫ 〈

δ

[
u − tanh

(
Fsξ +

C−1∑
l=1

tanh−1 ûl

)]〉
ξ

DC−1
π̂ (û)

π̂(û) =
∫ ∫

δ

(
û −

K−1∏
k=1

uk

L∏
l=1

vl

)
DK−1

π (u)DL
ρ (v)

ρ(v) =
∫ 〈

δ

[
v − tanh

(
h(y) +

L−1∑
l=1

tanh−1 v̂l

)]〉
y

DL−1
ρ̂ (v̂)

ρ̂(v̂) =
∫ ∫

δ

(
v̂ −

K∏
k=1

uk

L−1∏
l=1

vl

)
DK

π (u)DL−1
ρ (v).

(33)

Also here, the saddle-point equations may have more than one solution. The globally stable
state and metastable states are defined in the same way as in the Gallager code case.
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The overlap is then evaluated by m = ∫
sign(z)P (z) dz, with

P(z) =
∫ 〈

δ

[
z − tanh

(
Fsξ +

C∑
l=1

tanh−1 ûl

)]〉
ξ

DC
π̂ (û). (34)

When the message is unbiased (Fs = 0) and K is even, saddle-point solutions have
the following symmetry: for each solution {π(u), π̂(û), ρ(v), ρ̂(v̂)} there is another solution
{π(−u), π̂(−û), ρ(v), ρ̂(v̂)}. The latter has the same overlap as that of the former with the
opposite sign.

4. Results—Gallager code

4.1. Analytical solutions

It has been shown [8] that there are two analytical solutions to the saddle-point equation (24)
for the general BIOS channel. One is the ferromagnetic solution, valid for any values of K
and C (provided that K,C � 2), and another is the sub-optimal ferromagnetic solution (which
was termed the paramagnetic phase in [8]), which is valid in the limit K → ∞ (C may be
finite, although [8] requires C → ∞ as well).

The ferromagnetic solution is given by π(u) = δ(u − 1) and π̂(û) = δ(û − 1). For the
ferromagnetic solution we have mferro = 1 and Iferro = R log 2, the former means that this
solution corresponds to an error-free communication; and, by noting that R log 2 is equal to
the rate of the sent information, the latter means that asymptotically (as M → ∞) there is
no loss of information due to encoding and/or transmission, provided that the ferromagnetic
solution is the globally stable state. It should be noted that the absence of information loss
does not necessarily mean that practical decoding is possible.

The sub-optimal ferromagnetic solution is given by π(u) = 〈δ[u − tanh h(y)]〉y , π̂(û) =
δ(û), for which msf = 〈sign[p(y) − p(−y)]〉y and Isf = C hold, where C is the channel
capacity of the BIOS channel defined as

C = log 2 − 〈log[p(y) + p(−y)]〉y + 〈log p(y)〉y. (35)

If R log 2 < C, we have Iferro < Isf , so that the ferromagnetic solution gives the globally
stable state. On the other hand, if R log 2 > C, the sub-optimal ferromagnetic solution gives
the globally stable state (no other solution has been identified in this case). This proves that the
thermodynamic transition between the ferromagnetic and sub-optimal ferromagnetic solutions
occurs at the theoretical limit R log 2 = C; and the maximum rate Rmax, up to which error-
free communication is theoretically possible, asymptotically achieves the theoretical limit as
K → ∞. This result has been known for BSC [6, 7] and for BIAWGNC [8] in the physics
literature and is in agreement with results reported in the information-theory literature [16].
The current result is an extension to the case of a general BIOS channel.

4.2. Numerical solutions of saddle-point equations

In finite-K cases no simple analytical solution exists other than the ferromagnetic one, so
one has to solve the saddle-point equations numerically. We have done it for the BIAWGNC
and BILC. The dependence of the overlap m on the noise level d (σ 2 for BIAWGNC, and λ

for BILC) is qualitatively the same as that observed in BSC: for K � 3 the ferromagnetic
solution with m = 1 is locally stable over the whole range of noise levels. At d = ds ,
another solution with m < 1 appears, which defines the spinodal point; this is also termed
the dynamical transition point in the physics literature. At a higher noise level d = dt > ds
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Figure 2. Noise-overlap diagram for Gallager code. Thick solid lines stand for the stable state,
thin solid lines for metastable state and broken lines for unstable states. The ferromagnetic solution
is the one with m = 1, while m < 1 defines the suboptimal ferromagnetic solution.

Table 1. The parameter values ds and dt at the spinodal point and thermodynamic transition,
respectively, for (C, K)-Gallager codes over the BIAWGNC (d ≡ σ 2) and BILC (d ≡ λ) for
various code parameters; d0, denoting Shannon’s bound for error-free communication, is also
shown.

C K R σ 2
s σ 2

t σ 2
0 λs λt λ0

3 6 0.5 0.775 0.899 0.958 0.651 0.712 0.752
4 8 0.5 0.701 0.943 0.958 0.618 0.741 0.752
5 10 0.5 0.629 0.952 0.958 0.581 0.746 0.752
3 5 0.4 1.017 1.253 1.321 0.773 0.875 0.914
4 6 0.333 1.020 1.666 1.681 0.782 1.045 1.055
3 4 0.25 1.598 2.325 2.401 1.018 1.260 1.298

thermodynamic transition takes place, beyond which the ferromagnetic solution with m = 1
becomes metastable (see figure 2). The thermodynamic transition point dt is upper bounded
by the Shannon’s bound of the noise level d0 allowing error-free communication, which is
defined by R log 2 = C. Thus, in general, ds < dt � d0 holds. Table 1 summarizes the
results for the BIAWGNC and BILC cases, showing the spinodal point ds , the thermodynamic
transition point dt and Shannon’s bound d0 allowing error-free communication.

It should be noted that the results for the spinodal point agree well with the results obtained
by the density evolution approach [2], as expected, since the saddle-point equations by the
replica analysis happen to coincide with the time evolution equations in the density evolution.
One can therefore expect that the spinodal point ds defines the decoding threshold. Further
discussion regarding this point can be found in [22]. On the other hand, the thermodynamic
transition point dt defines the information-theoretic threshold. Empirically, the decoding
threshold ds can be achieved by linear complexity decoders, such as the belief-propagation
decoder [2, 16]. However, one should note that the information-theoretic threshold dt can
only be achieved by exhaustive computation of the posterior distribution, which is infeasible
in practice.

Our results in this paper are based on the RS ansatz. However, it has been reported (e.g.,
[22]) that the suboptimal solution appearing at ds has negative entropy so that one has to
consider replica-symmetry-breaking (RSB) in order to characterize the suboptimal solution
near ds precisely. Although this may affect the values of ds , accumulated evidences in the
information-theory literature [2] as well as the analysis on Gallager codes over the binary
erasure channel [22] suggests that the values of ds are not significantly affected by taking RSB
into account. We therefore assume that our results based on the RS ansatz represent the true
decoding threshold of the system. General analysis based on RSB is quite complicated and
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beyond the scope of this paper. The same argument also applies to the case of MN codes
presented in the following.

5. Results—MN code

5.1. Analytical solutions

In the following we restrict our discussion of the MN code to the unbiased case Fs = 0. The
ferromagnetic solution, corresponding to the error-free communication, can be constructed
for the MN code with L � 2. (In fact, in the case L = 1 the matrix Cn reduces to a simple
permutation matrix, so that we have to estimate each element of noise separately. This case is
not at all interesting and therefore we will not discuss it any more.) It is given by

π(u) = δ(u − 1) π̂(û) = δ(û − 1) ρ(v) = δ(v − 1) ρ̂(v̂) = δ(v̂ − 1) (36)

for which mferro = 1 and Iferro = R log 2, which again means that theoretically there is no loss
of information, provided that the ferromagnetic solution is the globally stable state.

The MN code has the following paramagnetic solution for K � 2:

π(u) = δ(u) π̂(û) = δ(û) ρ(v) = 〈δ[v − tanh h(y)]〉y ρ̂(v̂) = δ(v̂) (37)

which yields mpara = 0 and Ipara = C. Again, since Iferro < Ipara holds for R log 2 < C,
we conclude that for the MN code the maximum rate Rmax, theoretically allowing error-free
communication, achieves the theoretical limit as long as K � 2, L � 2, provided that there
is no locally stable solution other than the ferromagnetic and paramagnetic solutions (for the
case K = 2, however, there do exist stable solutions other than these two, as shown in the
following). This result is an extension of the result reported in [4, 5] to the case of a general
BIOS channel.

It should be noted that the paramagnetic solution (36) is also valid in the limit L → ∞
for the case K = 1. This means that the above-mentioned result also holds for the case of
K = 1 asymptotically in the limit L → ∞. Note also that these statements do not imply
that the error-free communication is possible at the theoretical limit in the practical sense. As
in the case of the Gallager codes, the practical performance is affected by the existence of
metastable states.

5.2. Numerical solutions of saddle-point equations

In order to explore solutions other than the ferromagnetic and paramagnetic solutions, we
have to solve the saddle-point equations numerically. We have done it for the BIAWGNC and
BILC cases. We observed qualitatively the same characteristics as those reported in [5].

The obtained numerical results suggest that the qualitative physical properties are
categorized into three types according to the K value: cases with K = 1,K = 2 and
K � 3, whereas it is only affected quantitatively by the values of C and L, as described in the
following.

The structure of noise-overlap diagram for the MN code with K = 1 is qualitatively the
same as that for Gallager code (see figure 2). At very low noise level only the ferromagnetic
solution with m = 1 exists. At a certain noise level d = ds another metastable solution
with m < 1 appears, and it becomes dominant beyond d = dt > ds . The spinodal point ds

again defines the decoding threshold. Numerical results show (see table 2) that in general the
thermodynamic transition point dt is smaller than Shannon’s bound d0. It is also observed
that, for fixed C, increasing L makes ds smaller and dt larger, the latter of which approaches
Shannon’s bound d0 as L → ∞, as discussed at the end of the previous subsection. Even
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Figure 3. Noise-overlap diagrams for MN code with K = 2.

Table 2. The parameter values ds , dt and db at the spinodal point and thermodynamic transition, and
at bifurcation of paramagnetic solution, respectively, for (K, C, L)-MN codes over the BIAWGNC
(d ≡ σ 2) and BILC (d ≡ λ) with various code parameters; d0, denoting Shannon’s bound for
error-free communication, is also shown.

K C L R σ 2
s σ 2

t σ 2
b σ 2

0 λs λt λb λ0

1 2 3 0.5 0.775 0.901 – 0.958 0.652 0.714 – 0.752
1 2 4 0.5 0.703 0.944 – 0.958 0.619 0.740 – 0.752
1 2 5 0.5 0.630 0.955 – 0.958 0.582 0.748 – 0.752
1 3 2 0.333 1.338 1.423 – 1.681 0.903 0.934 – 1.055
1 3 3 0.333 1.129 1.659 – 1.681 0.831 1.040 – 1.055
1 3 4 0.333 0.913 1.672 – 1.681 0.735 1.051 – 1.055
2 3 2 0.667 0.536 0.587 0.612 0.588 0.525 0.551 0.597 0.553
2 3 3 0.667 0.430 0.588 0.459 0.588 0.464 0.553 0.493 0.553
2 3 4 0.667 0.368 0.588 0.385 0.588 0.419 0.553 0.437 0.553
2 4 2 0.5 0.809 0.958 0.919 0.958 0.689 0.751 0.771 0.752
2 5 2 0.4 1.039 1.321 1.175 1.321 0.807 0.914 0.894 0.914

for finite L the value of dt may be numerically very close to d0, especially when the rate
R is small. These properties have already been reported for the BSC case [5], so that our
finding implies that they also hold for the BIAWGNC and BILC cases, revealing some sort of
universality.

The noise-overlap diagram for the cases with K = 2 has the general structure shown
in figure 3. The diagram is characterized by three transition points: the spinodal point
ds (which defines the decoding threshold), the thermodynamic transition point dt (which
defines the information-theoretic threshold) and the bifurcation point db (at which the stability
of the paramagnetic solution changes). The order of the thermodynamic transition point dt

and the bifurcation point db varies with the values of C and L, so that the bifurcation pattern for
the cases with K = 2 is further divided into two sub-categories depending on the order of the
two transitions: ds < db < dt for the first group and ds < dt < db for the second group. The
noise-overlap diagrams for these groups are illustrated in figures 3(a) and (b), respectively.
By the local stability analysis the bifurcation point db is determined by∫

vρ(v) dv = (C − 1)−1/L (38)

with ρ(v) as given in (37), which allows us to decide the type of bifurcation of a particular
case. See the appendix for derivation of (38). As a result, we found that only a few cases with
small values of C and L fall into the second category. The values of C and L for which the
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Figure 4. Noise-overlap diagram for MN code with K � 3.

(2, C,L)-MN code falls into the second category depend on the channel characteristics; as far
as we have observed, only the cases with L = 2 fall into the second group. For the BIAWGNC
case, the (2, 3, 2)-MN code is the only one instance, whereas for the BILC case, both (2, 3, 2)-
and (2, 4, 2)-MN codes belong to this group. (For the BSC case, (2, 3, 2)-, (2, 4, 2)- and
(2, 5, 2)-MN codes belong to this group.) All the (2, C,L)-MN codes but those mentioned
above are in the first group. For the cases in the second group, the thermodynamic transition
point dt must be less than the information-theoretic limit d0, but it is observed numerically
that dt is very close to d0.

We observed that the noise-overlap diagram for the cases with K � 3 is relatively simple
for the BIAWGNC and BILC cases, just as in the BSC case (see figure 4). The ferromagnetic
solution with m = 1 (and its mirror image with m = −1 when K is even) and the paramagnetic
solution are the only stable solutions found, both of which are locally stable over the whole
range of the noise level. The system exhibits a first-order transition at Shannon’s bound dt .
We did not find any solutions other than the ferromagnetic and paramagnetic solutions.

6. Conclusions

We have analysed the typical performance of LDPC codes over BIOS channel using statistical
mechanics. Since it has been shown in [8, 18] that the log-likelihood ratio of the received signal
acts as an external random field acting on each site, and that channel characteristics define
the distribution of the random field, our analysis amounts to investigating the effect of the
random field distribution on the performance. Relationship between the mutual information
and the free energy has been established in a quite general setting, including the case of LDPC
codes. Both Gallager and MN codes are analysed under the RS ansatz, to find that the basic
properties of these codes remain unchanged regardless of channel characteristics. In particular,
it has been shown for general BIOS channel that these codes potentially saturate Shannon’s
limit asymptotically, as K → ∞, for the Gallager code; and when K,L � 2—with a few
exceptions with small C and L values—and asymptotically as L → ∞ for K = 1, for the MN
code. Saddle-point solutions have also been numerically evaluated extensively for the cases of
BIAWGNC and BILC channels, from which noise-overlap diagrams, as well as the spinodal,
thermodynamic transition, and other bifurcation points, have been characterized.

Some of the results obtained, in particular the dynamical transition point values, have been
linked to the limitation of practical decoding algorithms; more specifically, to the difficulty
of finding optimal solutions in the presence of metastable states. It would be extremely
interesting to study the practical decoding capabilities of novel decoding algorithms based on
survey propagation [24], that have been shown to find optimal solutions even when metastable
states are present.
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Appendix. Stability of paramagnetic solution of MN codes with K � 2

To probe the stability of paramagnetic solution, which exists for MN codes with K � 2, we
analyse the stability with respect to q and r only, and do not consider stability with respect to
q̂ and r̂. As discussed in [23], these conjugate variables are subsidiary to their counterparts,
q and r, respectively, so that the former should not be considered as independent variables.

Let A,B, . . . denote sets of replica indices such as 〈α1 · · · αm〉,m � 1. We first evaluate
the Hessian of the free energy (28) with respect to 4 × (2n − 1) variables {qA, q̂A, rA, r̂A}:

H =




Hqq Hqq̂

Hqq̂ Hq̂q̂
O

O
O Hrr̂

Hrr̂ Hr̂r̂


 (39)

where (
Hqq

)
AB

=
{

0 (K � 3)

− K

q2
0

(
rA

r0

)L
δAB (K = 2)

(40)

and where l(Hqq̂)AB = (N/M)δAB , (Hq̂q̂)AB = −[K(C − 1)
/
q̂2

0

]
δAB , (Hrr̂)AB = δAB ,

(Hr̂r̂)AB = −[L(L − 1)
/
r̂2

0

]
δAB . The block-diagonal structure of the Hessian allows us to

decompose the stability problem into two, one with respect to q, and another with respect
to r.

Following the argument in the appendix of [23], one can say that the system is stable with
respect to q (with q̂ depending on q) if the matrix Hc ≡ Hqq − Hqq̂(Hq̂q̂)

−1Hqq̂ is positive
definite. A corresponding statement holds for the stability with respect to r.

The stability with respect to r is straightforward, by noting that the matrix Hr̂r̂ is negative
definite, which means that Hc = −(Hr̂r̂)

−1 is positive definite.
We consider the stability with respect to q. For K � 3, we have Hc = q̂2

0[K/C2(C−1)]I ,
where I is the identity matrix, so that the stability immediately follows, irrespective of the
noise level of the channel. For K = 2, the matrix Hc is diagonal, and its Ath element is

(Hc)AA = − K

q2
0

(
rA

r0

)L

+
Kq̂2

0

C2(C − 1)
. (41)

Using the equality which holds under the RS ansatz,

rA

r0
=
∫ 1

−1
vmρ(v) dv (42)

where A = α1 · · · αm, we have, as the stability condition,

Em ≡
∫ 1

−1
vmρ(v) dv < (C − 1)−1/L (43)

for m = 1, . . . , n. Since it can be shown that E2m−1 = E2m and E2m � E2m+2, the critical
condition determining the stability is E1 < (C − 1)−1/L, which yields (38).
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